Hopf Algebra of Permutations

نویسنده

  • FRANK SOTTILE
چکیده

We analyze the structure of the Malvenuto-Reutenauer Hopf algebra of permutations in detail. We give explicit formulas for its antipode, prove that it is a cofree coalgebra, determine its primitive elements and its coradical filtration and show that it decomposes as a crossed product over the Hopf algebra of quasi-symmetric functions. We also describe the structure constants of the multiplication as a certain number of facets of the permutahedron. Our results reveal a close relationship between the structure of this Hopf algebra and the weak order on the symmetric groups. Résumé. On analyse la structure de l’algèbre de Hopf de Malvenuto et Reutenauer en détail. On donne des formules explicites pour son antipode, on prouve que c’est une coalgèbre colibre, on determine ses éléments primitifs et sa filtration coradical et on montre qu’elle se décompose comme un produit croisé sur l’algèbre de Hopf de fonctions quasi-symétriques. On decrit aussi les constants de structure de la multiplication comme un certain numéro de facettes du permutahedron. Nos résultats mettent en évidence une forte relation entre la structure de cette algèbre de Hopf et l’ordre faible dans les groupes symetriques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hopf Algebra of Uniform Block Permutations. Extended Abstract

Abstract. We introduce the Hopf algebra of uniform block permutations and show that it is self-dual, free, and cofree. These results are closely related to the fact that uniform block permutations form a factorizable inverse monoid. This Hopf algebra contains the Hopf algebra of permutations of Malvenuto and Reutenauer and the Hopf algebra of symmetric functions in non-commuting variables of Ge...

متن کامل

The Hopf Algebra of Uniform Block Permutations

We introduce the Hopf algebra of uniform block permutations and show that it is self-dual, free, and cofree. These results are closely related to the fact that uniform block permutations form a factorizable inverse monoid. This Hopf algebra contains the Hopf algebra of permutations of Malvenuto and Reutenauer and the Hopf algebra of symmetric functions in non-commuting variables of Gebhard, Ros...

متن کامل

A polynomial realization of the Hopf algebra of uniform block permutations

We investigate the combinatorial Hopf algebra based on uniform block permutations and we realize this algebra in terms of noncommutative polynomials in infinitely many bi-letters. Résumé. Nous étudions l’algèbre de Hopf combinatoire dont les bases sont indexées par les permutations de blocs uniformes et nous réalisons cette algèbre en termes de polynômes non-commutatifs en une infinité de bi-le...

متن کامل

Combinatorial Realization of the Hopf Algebra of Sashes

A general lattice theoretic construction of Reading constructs Hopf subalgebras of the Malvenuto-Reutenauer Hopf algebra (MR) of permutations. The products and coproducts of these Hopf subalgebras are defined extrinsically in terms of the embedding in MR. The goal of this paper is to find an intrinsic combinatorial description of a particular one of these Hopf subalgebras. This Hopf algebra has...

متن کامل

Structure of the Malvenuto-reutenauer Hopf Algebra of Permutations

We analyze the structure of the Malvenuto-Reutenauer Hopf algebraSSym of permutations in detail. We give explicit formulas for its antipode, prove that it is a cofree coalgebra, determine its primitive elements and its coradical filtration, and show that it decomposes as a crossed product over the Hopf algebra of quasi-symmetric functions. In addition, we describe the structure constants of the...

متن کامل

Cocommutative Hopf Algebras of Permutations and Trees

Consider the coradical filtration of the Hopf algebras of planar binary trees of Loday and Ronco and of permutations of Malvenuto and Reutenauer. We show that the associated graded Hopf algebras are dual to the cocommutative Hopf algebras introduced in the late 1980’s by Grossman and Larson. These Hopf algebras are constructed from ordered trees and heap-ordered trees, respectively. We also sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002